In een maximum van een grafiek gaat de grafiek over van stijgen naar dalen. De helling gaat op dat punt over van positief naar negatief. De grafiek van de afgeleide is de hellingsgrafiek en gaat op hetzelfde punt over van positief naar negatief.
Bekijk de grafiek (rood) van de functie `f(x)=x^4-2 x^2+4` . De andere grafiek (blauw) is de grafiek van de afgeleide `f'` , de hellingsgrafiek. Je ziet dat:
de grafiek van `f` een minimum heeft als de afgeleide overgaat van negatief naar positief (voor `x=text(-)1` en voor `x=1` );
de grafiek van `f` een maximum heeft als de afgeleide overgaat van positief naar negatief (voor `x=0` ).
Voor het bepalen van extremen gebruik je de waarden van
`x`
waar de afgeleide overgaat van positief in negatief of andersom. Dit is bij een nulpunt
van de afgeleide.
Als de afgeleide
`0`
is, heeft de grafiek van de functie een horizontale raaklijn.
De extremen van de functie `f(x)=x^4-2x^2+4` bereken je dus zo:
Bereken eerst voor welke
`x`
-waarden de afgeleide
`0`
is:
`f'(x)=0`
geeft
`4x^3 - 4x = 0`
Hieruit vind je:
`x = 0 vv x = text(-)1 vv x = 1`
Maak een tekenschema van `f'` of bekijk de grafiek van `f` . Controleer of de afgeleide van teken wisselt.
Bereken de extremen:
minimum
`f(text(-)1)=3`
, maximum
`f(0)=4`
en minimum
`f(1)=3`
.
In de
Gegeven is de functie `f(x)=x^3-3 x` .
Bepaal de afgeleide van `f` .
Bereken de nulpunten van de afgeleide.
Maak een tekenschema van `f'` of bekijk de grafiek van `f` en bepaal de extremen van `f` .
Bekijk de grafiek van de functie `f(x)=x^3` .
Bereken de waarden van `x` waarvoor `f'(x)=0` .
Deze functie heeft voor `x=0` een horizontale raaklijn. Heeft de functie ook een extreme waarde voor `x=0` ?
Bekijk de grafiek van de functie `g(x)=sqrt(x)` . Wat is er aan de hand in `x=0` ?
De functie en de afgeleide hebben er beide de waarde `0` , maar er is geen extreme waarde.
De functie en de afgeleide hebben er beide de waarde `0` en er is een minimum van `f(0 )=0` .
Alleen de functie heeft er de waarde `0` en `f'(0 )` is onbekend. Er is geen extreme waarde.
Alleen de functie heeft er de waarde `0` en `f'(0 )` is onbekend. Er is een minimum van `f(0 )=0` .