In de finale herenenkel van het tennistoernooi van Wimbledon wordt gespeeld om "best of five" : wie het eerst drie sets heeft gewonnen is kampioen. Na hoogstens vijf sets is er dus een winnaar; het kan al na drie sets. Neem je aan dat beide finalisten even sterk zijn en kans `50` % hebben om een set te winnen, dan is het aantal in de finale gespeelde sets een toevalsvariabele `S` .
Maak daarvan een kansverdeling en bereken het verwachte aantal sets.
Neem aan dat het toernooi van Wimbledon al honderd keer is gespeeld. Hoeveel sets zijn er dan naar verwachting in totaal in de finales gespeeld?
De werkelijke gegevens leren toch anders, zie de tabel over `90` finales.
partijlengte | `3` sets | `4` sets | `5` sets |
aantal keer | `44` | `22` | `24` |
Bepaal de experimentele kansverdeling en verwachtingswaarde van `S` .
De oorspronkelijke aanname was dus niet zo goed. Stel je nu voor dat de kans om de eerste set te winnen `50` % blijft, maar de kans om de set na een gewonnen set te winnen `70` % is (de "winning mood" ).
Maak nu opnieuw een kansverdeling (bekijk zorgvuldig alle gevallen).
Bereken het verwachte aantal sets bij de nieuwe kansverdeling.
Vogeldeskundigen willen weten welke vogelsoorten in een bepaald gebied leven. Een eenvoudige manier om daarachter te komen, is het maken van een ronde door dat gebied en alle waargenomen vogels te registreren. Men spreekt van een registratie-effectiviteit van `100` % wanneer alle aanwezige vogels opgemerkt worden. In de praktijk blijkt de registratie-effectiviteit per ronde slechts `60` % te zijn, de overige `40` % van de totale vogelpopulatie wordt niet opgemerkt. De Zweedse vogeldeskundige Anders Enemar stelt dat de registratie-effectiviteit door het maken van drie ronden zodanig wordt verhoogd, dat men vrijwel zeker mag aannemen dat alle vogelsoorten zijn opgemerkt. Hij neemt daarbij aan dat iedere aanwezige vogel bij elke ronde `60` % kans heeft om opgemerkt te worden.
Bereken hoeveel procent van de totale populatie naar verwachting na drie ronden nog niet zal zijn opgemerkt.
Na drie ronden is de vogelpopulatie verdeeld in vier categorieën: I, II, III, IV.
I niet opgemerkt;
II één keer opgemerkt;
III twee keer opgemerkt;
IV drie keer opgemerkt.
Welke van deze vier categorieën bevat de meeste exemplaren? Licht je antwoord toe met een berekening.
Stel dat er bij iedere ronde ongeveer `450` vogels worden opgemerkt.
Bereken hoeveel vogels er ongeveer bij de derde ronde voor het eerst worden opgemerkt.
(bron: examen wiskunde A in 1990, eerste tijdvak)